Abstract

Graphene oxide (GO) as a nano-reinforcing material has received extensive attention in cement composite materials. This paper employed molecular dynamics to simulate the friction process of calcium silicate hydrate (CSH) particles in the presence of double-sided and single-sided GCOOH (graphene oxide with a -COOH functional group, covering 10% of the surface). The investigation uncovered the lubricating effects of bifacial and unifacial GCOOH on the CSH interface. The findings indicate that the interfacial friction among CSH particles follows the sequence of double-sided GCOOH > pure CSH > single-sided GCOOH. In the double-sided GCOOH system, a greater external force is needed on the opposing side to alter the interaction with water molecules, calcium ions, and silica-oxygen tetrahedra, thereby enhancing friction. In contrast, the majority of the carboxyl groups on the single-sided GCOOH surface are strongly adsorbed onto the CSH surface, facilitating the entry of additional water molecules into the interlayer. Conversely, the unmodified side of the GCOOH has lower interactions with water molecules, hence improving its lubricating properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.