Abstract

Understanding the mechanism of high temperature deformation is important for controlling the forming quality of the titanium alloy forgings. In the present work, the flow softening mechanism in subtransus deformation of titanium alloys with equiaxed structure was investigated by interrupted isothermal compression tests. The results show that limited strain hardening followed by continuous flow softening occurs in high temperature deformation of a two-phase TA15 titanium alloy. The flow softening can not be rationalized by dynamic recrystallization. Instead, the increase of mobile dislocations during deformation is an important reason for flow softening. The grain boundaries (including the α-β interfaces) act as an important source for the generation of mobile dislocations. The continuous flow softening results from the significant deformation heterogeneity in subtransus working.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.