Abstract

Ellipticine, a cytotoxic plant alkaloid, is known to inhibit topoisomerase II. Here, we first report the molecular mechanism of ellipticine's apoptotic action in human breast MCF-7 cancer cells. Treatment of cells with ellipticine resulted in inhibition of growth, and G2/M phase arrest of the cell cycle. This effect was associated with a marked increase in the protein expression of p53 and, p21/WAF1 and KIP1/p27, but not of WAF1/p21. Ellipticine treatment increased the expression of Fas/APO-1 and its ligands, mFas ligand and sFas ligand, and subsequent activation of caspase-8. The mitochondrial apoptotic pathway amplified the Fas/Fas ligand death receptor pathway by Bid interaction. This effect was found to result in a significant increase in activation of caspase-9. Taken together, we have concluded that the molecular mechanisms during ellipticine-mediated growth inhibition and induction of apoptosis in MCF-7 cells were due to (1) cell cycle arrest and induction of apoptosis, (2) induction of p53 and KIP1/p27 expression, (3) triggering of Fas/Fas ligand pathway, (4) disruption of mitochondrial function, and (5) the apoptotic signaling was amplified by cross-talk between Fas death receptor and mitochondrial apoptotic pathway.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call