Abstract

During the fatigue of copper at elevated temperatures cavities form on grain boundaries and cause a decrease in density. The fractional change in density is directly proportional to time for tests in which the plastic strain amplitude remains constant. In constant-stress tests, when the stress is sufficient to cause appreciable hardening, the fractional change in density is approximately proportional to (time)⅔. For the majority of the tests the activation energy of the growth process is 24.2 kcal.mole−1; this and other evidence suggests that growth depends on a grain-boundary diffusion mechanism as well as on the migration of vacancies created by fatigue. The results are interpreted on the basis of a model in which defects absorbed by grain-boundary migration contribute to cavity growth.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.