Abstract

The main purpose of this article is to demonstrate that bursting oscillations can be observed not only in the slow–fast autonomous dynamical systems with multiple scales associated with time domain, but also in the non-autonomous dynamical systems with periodic excitations when an order gap exists between the exciting frequency and the natural frequency, implying multiple scales in frequency domain. Furthermore, we try to investigate the influence of different codimensional bifurcations between the quiescent states (QS) and repetitive spiking states (SP) and the nonlinear structures with different equilibrium branches on the bursting oscillations. By introducing an inductor as well as a periodically changed electrical current source in a traditional Chua’s circuit and taking suitable parameter values, a modified four-dimensional periodically excited oscillator with multiple scales in frequency domain is established. Bursting oscillations for two cases with nonlinear terms up to third and fifth order with codimension-1 and codimension-2 bifurcations have been explored, respectively. It is found that more equilibrium states may exist when higher order nonlinear terms are introduced in the vector field, which may cause multiple quiescent states, and accordingly, multiple forms of repetitive spiking oscillations in one bursting attractor, leading to more complicated bursting phenomena. Furthermore, instead of jumping from one stable equilibrium branch to settle down to another stable equilibrium branch when codimension-1 bifurcations (fold bifurcations) exist between QSs and SPs, codimension-2 bifurcation (fold-Hopf bifurcation) may cause QS approximately located on one stable equilibrium branch to jump to repetitive spiking oscillations surrounding another stable equilibrium branch of the generalized autonomous system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call