Abstract

BackgroundAnnexin A1 (ANXA1) exerts anti-nociceptive effect through ANXA1 receptor formyl peptide receptor 2 (FPR2/ALX (receptor for lipoxin A4), FPR2) at the dorsal root ganglia (DRG) level. However, the mechanisms remain elucidated. By using radiant heat, hot/cold plate, tail flick, von Frey, and Randall-Selitto tests to detect nociception in intact and chemical (capsaicin, menthol, mustard oil, formalin or CFA) injected AnxA1 conditional knockout (AnxA1−/−) mice, applying calcium imaging and patch clamp recordings in cultured DRG neurons to measure neuronal excitability, conducting immunofluorescence and western blotting to detect the protein levels of TRPV1, FPR2 and its downstream molecules, and performing double immunofluorescence and co-immunoprecipitation to investigate the interaction between Calmodulin (CaM) and TRPV1; we aim to uncover the molecular and cellular mechanisms of ANXA1’s role in antinociception.ResultsAnxA1−/− mice exhibited significant sensitivity to noxious heat (mean ± SD, 6.2 ± 1.0 s vs. 9.9 ± 1.6 s in Hargreaves test; 13.6 ± 1.5 s vs. 19.0 ± 1.9 s in hot plate test; n = 8; P < 0.001), capsaicin (101.0 ± 15.3 vs. 76.2 ± 10.9; n = 8; P < 0.01), formalin (early phase: 169.5 ± 32.8 s vs. 76.0 ± 21.9 s; n = 8; P < 0.05; late phase: 444.6 ± 40.1 s vs. 320.4 ± 33.6 s; n = 8; P < 0.01) and CFA (3.5 ± 0.8 s vs. 5.9 ± 1.4 s; n = 8; P < 0.01). In addition, we found significantly increased capsaicin induced Ca2+ response, TRPV1 currents and neuronal firing in AnxA1 deficient DRG neurons. Furthermore, ANXA1 mimic peptide Ac2-26 robustly increased intracellular Ca2+, inhibited TRPV1 current, activated PLCβ and promoted CaM-TRPV1 interaction. And these effects of Ac2-26 could be attenuated by FPR2 antagonist Boc2.ConclusionsSelective deletion of AnxA1 in DRG neurons enhances TRPV1 sensitivity and deteriorates noxious heat or capsaicin induced nociception, while ANXA1 mimic peptide Ac2-26 desensitizes TRPV1 via FPR2 and the downstream PLCβ-Ca2+-CaM signal. This study may provide possible target for developing new analgesic drugs in inflammatory pain.

Highlights

  • Though currently available analgesics including opioids and cannabinoids have therapeutic benefits, long-term use causes unintended toxicity and serious side effects [1]

  • By using conditional knockout mice, combining a variety of pain behavioral measurements, C­ a2+ imaging, whole cell patch recording and co-immunoprecipitation, we investigated whether deletion of Annexin A1 (ANXA1) in dorsal root ganglia (DRG) affects nociception and Transient receptor potential vanilloid 1 (TRPV1) function through formyl peptide receptor 2 (FPR2) signal in DRG neurons

  • We previously demonstrated that ANXA1 has anti-nociceptive effects through FPR2 at the DRG level [5]

Read more

Summary

Introduction

Though currently available analgesics including opioids and cannabinoids have therapeutic benefits, long-term use causes unintended toxicity and serious side effects [1]. Measurement of thermal (e–g) and mechanical (h and i) nociception between control and AnxA1−/− mice. F Quantification of the thermal latency to hot plate at 50 °C Hot/cold plate, tail flick, von Frey, and Randall-Selitto tests to detect nociception in intact and chemical (capsaicin, menthol, mustard oil, formalin or CFA) injected AnxA1 conditional knockout (AnxA1−/−) mice, applying calcium imaging and patch clamp recordings in cultured DRG neurons to measure neuronal excitability, conducting immunofluorescence and western blotting to detect the protein levels of TRPV1, FPR2 and its downstream molecules, and performing double immunofluorescence and co-immunoprecipitation to investigate the interaction between Calmodulin (CaM) and TRPV1; we aim to uncover the molecular and cellular mechanisms of ANXA1’s role in antinociception

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.