Abstract

The uptake of amino acids by excised seed coat halves of developing seeds of pea (Pisum sativum L.) was characterized. The influx of L-valine and L-glutamic acid was proportional to their external concentration, with coefficients of proportionality (k) of 11.0 and 7.1 [mu]mol g-1 fresh weight min-1 M-1, respectively. The influx of L-lysine could be analyzed into a component with linear kinetics (k = 8.1 [mu]mol g-1 fresh weight min-1 M-1) and one with saturation kinetics (Michaelis constant = 6.5 mM), but the latter may have resulted from the mutual interaction between the influx of the cationic lysine and the membrane potential. The influx of the amino acids was not affected by 10 [mu]M carbonylcyanide m-chlorophenylhydrazone, but was inhibited by about 50% in the presence of 2.5 mM p-chloromercuribenzene sulfonic acid. Conservative estimates of the permeability coefficients of the plasma membrane of seed coat parenchyma cells for lysine, glutamic acid, and several neutral amino acids were all in the range of 4 x 10-7 cm s-1 to 9 x 10-7 cm s-1, which is 4 to 5 orders of magnitude greater than those reported for artificial lipid bilayers. It is concluded that nonselective pores constitute a pathway in the plasma membrane for passive transport of amino acids. It is argued that this pathway is also used for the efflux of endogenous amino acids, the process by which nitrogen becomes available for the embryo.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.