Abstract

Trichinella spiralis is a zoonotic parasite with worldwide distribution that can seriously harm human health and animal husbandry. Ornithine decarboxylase is a component of the acid resistance (AR) system in Escherichia coli. The aim of this study was to investigate the role that T. spiralis ornithine decarboxylase (TsODC) plays in the acid resistance mechanism of T. spiralis. This study involved assessing the transcription and expression of TsODC in worms under acidic conditions. According to mRNA sequences published by NCBI and the results of molecular biology experiments, the complete TsODC sequence was cloned and expressed. rTsODC had good immunogenicity, and immunofluorescence analysis revealed that TsODC was principally localized on the surface tissues of the nematode, especially at the head and tail. qRT‒PCR and Western blotting analysis indicated that the relative expression levels of TsODC mRNA and protein were highest when cultured at pH 2.5 for 2 h. The muscle larvae (ML) of T. spiralis were treated with curcumin and rapamycin, as well as arginine and TsODC polyantisera. The expression levels of TsODC mRNA and protein were significantly increased by arginine and suppressed by curcumin and rapamycin. After reducing the amount of TsODC, the relative expression of TsODC mRNA and the survival rate of T. spiralis ML were both reduced when compared to these values in the phosphate-buffered saline (PBS) group. The results indicated that TsODC is a member of the T. spiralis AR system and different treatments on TsODC have different effects; thus, these treatments might be a new way to prevent T. spiralis infection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call