Abstract

5-aminoketovaleric acid, as a precursor of the strong photosensitizer protoporphyrin IX (PpIX), mainly enters the mitochondria after entering the cell, and the formed PpIX is also mainly localized in the mitochondria. So at present the research on the mechanism of 5-aminoketovalerate photodynamic therapy (ALA-PDT) mainly focuses on its impact on mitochondria. There are few reports on whether ALA-PAT can affect the endoplasmic reticulum and trigger endoplasmic reticulum stress (ERS). Here we investigated the effects of ALA-PDT on endoplasmic reticulum and its underlying mechanisms in high-risk human papillomavirus (HR-HPV) infection. The human cervical cancer cell line HeLa (containing whole genome of HR-HPV18) was treated with ALAPDT, and cell viability, ROS production, the level of Ca2+ in the cytoplasm and apoptosis were evaluated by CCK8, immunofluorescence and flow cytometry, respectively. The protein expression of the markers of ERS and autophagy and CamKKβ-AMPK pathway was examined by western blot. The results showed that ALA-PDT inhibited cell viability of HeLa cells in vitro; ALA-PDT induced autophagy in HeLa cells ; ALA-PDT induced autophagy via the Ca2+-CamKKβ-AMPK pathway, which could be suppressed by the inhibition of ERS;ALA-PDT induced ERS-specific apoptosis via the activation of caspase 12. Our study demonstrated that ALA-PDT could exert a killing effect by inducing HeLa cell apoptosis, including endoplasmic reticulum-specific apoptosis. Meanwhile, ERS via the Ca2+ -CamKKβ-AMPK pathway promoted the occurrence of autophagy in HeLa cells. Inhibition of autophagy could increase the apoptosis rate of HeLa cells after ALA-PDT, suggesting that autophagy may be one of the mechanisms of PDT resistance; The Ca2+-CamKKβ-AMPK pathway and autophagy may be targets to improve the killing effect of ALA-PDT in treating HR-HPV infection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call