Abstract

The 1,3-dipolar cycloaddition reaction of cyclopropanes and nitrones to give tetrahydro-1,2-oxazine has been studied with density functional theory calculations at the B3LYP/6-31+G(d,p) level of theory. Realistic substituents were modelled including those at the 2-, 3-, 4-, and 6-positions of the final oxazine ring product. The strained σ bond of the cyclopropane was found to play the role of an alkene in a conventional [3+2] dipolar cycloaddition. Two distinct, but similar, reaction mechanisms were found — an asymmetric concerted pathway and a stepwise zwitterionic pathway. The reaction barriers of the two pathways were nearly identical, differing by less than ~1 kcal/mol, no matter what the substituents were. The effect of a Lewis acid catalyst was examined and found to have a very large effect on the calculated barriers through coordination to the carbonyl oxygen atoms of the diester substituents on the cyclopropane. The reaction barrier was found to decrease by as much as ~19 kcal/mol when using a BF3 molecule as a model for the Lewis acid catalyst. Solvent effects and the nature of the regiospecificity of the reaction were also examined. Trends in the calculated barriers for the reaction were in good agreement with available trends in the reaction rates measured experimentally. Key words: 1,3-dipolar cycloaddition, cyclopropane, nitrone, tetrahydro-1,2-oxazines, ab initio quantum chemistry, mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.