Abstract

The study investigates the mechanism of teleconnection between the variability of sea ice extent (SIE) in the Indian Ocean sector of the Southern Ocean and the variability of Indian summer monsoon rainfall. We utilized reanalysis, satellite, in-situ observation data, and model output from the coupled model intercomparison project phase 5 (CMIP5) from 1979 to 2013. The empirical orthogonal function (EOF) and correlation analysis show that the first and third modes of principal component (PC1 and PC3) of SIE in the Indian Ocean sector during April–May–June (AMJ) are significantly correlated with the second mode of principal component (PC2) of Indian summer monsoon rainfall. The reanalysis data revealed that the changes in the SIE in the Indian Ocean sector excite meridional wave train responses along the Indian Ocean for both principal component modes. Positive (negative) SIE anomalies based on first and third EOFs (EOF1 and EOF3), contribute to the strengthening (weakening) of the Polar, Ferrel, and Hadley cells, inducing stronger (weaker) convective activity over the Indian latitudes. The stronger (weaker) convective activity over the Indian region leads to more (less) rainfall over the region during high (low) ice phase years. Furthermore, a stronger (weaker) polar jet during the high (low) ice phase is also noted. The selected CMIP5 models captured certain atmospheric teleconnection features found in the reanalysis. During AMJ, the SIE simulated by the NorESM1-M model was significantly positively correlated with Indian summer monsoon rainfall, whereas the IPSL-CM54-LR model showed a negative correlation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.