Abstract

Using real-time in situ scanning tunneling microscopy and density functional theory simulations, we have studied the growth of Si films on Ag(111) beyond the silicene monolayer, evidencing the existence of metastable phases and an original growth mechanism. Above monolayer Si coverage, an initial structure forms, which is identified as an Ag-free Si bilayer with additional Si adatoms. With further deposition, this structure is replaced by a distinct bilayer structure covered by Si trimers and Ag atoms. The formation of these bilayers follows counterintuitive dynamics: they are partially inserted within the Ag substrate and form by expelling, from the underlying substrate, the atoms that reinsert below the adjacent silicene layer. The growth is therefore characterized by an unexpected "surfactant competition" between Ag and silicene: while silicene is a metastable surfactant for the Ag(111) surface, Ag plays the role of a surfactant for thicker diamond-like Si islands. In spite of being thermodynamically unfavoured, the silicene monolayer is, thus, a remarkably stable structure because of the high kinetic barrier for the growth of thicker layers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.