Abstract

BackgroundIn a mammalian auditory system, when intrinsic noise is added to a subthreshold signal, not only can the resulting noisy signal be detected, but also the information carried by the signal can be completely recovered. Such a phenomenon is called stochastic resonance (SR). Current analysis of SR commonly employs the energies of the subthreshold signal and intrinsic noise. However, it is difficult to explain SR when the energy addition of the signal and noise is not enough to lift the subthreshold signal over the threshold. Therefore, information modulation has been hypothesized to play a role in some forms of SR in sensory systems. Information modulation, however, seems an unlikely mechanism for mammalian audition, since it requires significant a priori knowledge of the characteristics of the signal.ResultsWe propose that the analysis of SR cannot rely solely on the energies of a subthreshold signal and intrinsic noise or on information modulation. We note that a mammalian auditory system expends energy in the processing of a noisy signal. A part of the expended energy may therefore deposit into the recovered signal, lifting it over threshold. We propose a model that in a rigorous mathematical manner expresses this new theoretical viewpoint on SR in the mammalian auditory system and provide a physiological rationale for the model.ConclusionOur result indicates that the mammalian auditory system may be more active than previously described in the literature. As previously recognized, when intrinsic noise is used to generate a noisy signal, the energy carried by the noise is added to the original subthreshold signal. Furthermore, our model predicts that the system itself should deposit additional energy into the recovered signal. The additional energy is used in the processing of the noisy signal to recover the original subthreshold signal.

Highlights

  • In a mammalian auditory system, when intrinsic noise is added to a subthreshold signal, can the resulting noisy signal be detected, and the information carried by the signal can be completely recovered

  • We present a new theoretical viewpoint for the analysis of stochastic resonance (SR) in the mammalian auditory system

  • The analysis indicates that the mechanism for reception of auditory sensation is necessarily more active than previously considered

Read more

Summary

Introduction

In a mammalian auditory system, when intrinsic noise is added to a subthreshold signal, can the resulting noisy signal be detected, and the information carried by the signal can be completely recovered. Such a phenomenon is called stochastic resonance (SR). The original signal is insufficient to reach threshold and stimulate the appropriate sensory system unless it interacts with some intrinsic noise. Such an interaction generates a "noisy signal". For a biological sensory system, SR enhances sensory information processing, near the system's threshold

Objectives
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call