Abstract

The present work investigates the effect of acid functionalization of multiwalled carbon nanotubes (MWCNTs) on the physisorption based mechanism of hydrogen storage at room temperature. For this purpose, a suite of functionalized CNT samples is synthesized and subjected to a comprehensive range of material characterization techniques and hydrogen storage measurements. Nitric acid (HNO3) and the mixture of sulphuric acid and nitric acid (H2SO4:HNO3) are used for the synthesis at oxidation temperatures of 80 °C and 100 °C. Electron microscopy and X-ray photoelectron spectroscopy results reveal that acid functionalization causes major alternation in the physicochemical properties of the CNTs due to the varied concentration of oxygen functional groups. Particularly, the H2SO4:HNO3 functionalized sample at 100 °C is found to have the highest interlayer spacing, oxygen to carbon ratio (26.09 at. %), defect content, and specific surface area (215.3 m2/g). These features collectively contribute to substantially improved hydrogen storage properties, including a ∼150% increase in the hydrogen storage capacity at 298 K and 50 bar. Furthermore, kinetic analysis shows that the desorption follows a multiple diffusion process which is sensitive to the oxygen functional groups and structural defects, hence reducing the rate of desorption; whereas the adsorption is controlled by a more rapid, three-dimensional diffusion process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.