Abstract

Spiral/helical forms of blood flow have been observed in large arteries of the cardiovascular system, but their benefits remain underappreciated. Spiral flow has been postulated to improve near-wall washout, promoting anti-atherothrombotic conditions. This research aims to study the washout characteristics of spiral flow, specifically, its ability to increase velocity and wall shear stress (WSS) in atherothrombotic-prone regions. Using 1.2cm diameter angled test-conduits (45°, 90°, 135°) with known recirculation/stasis regions at the bend corners, spiral flow washout potential was evaluated in terms of low velocity and low WSS. Two sub-studies were conducted: the first utilized a spiral flow-inducing device to enable qualitative analysis of washout-potential in both computational fluid dynamic (CFD) simulations and benchtop ultrasound visualization; the second used CFD to study the impact of several induced helical wavelengths on the conduit-dependent recirculation/stasis zones. Physical models of the angled conduits and spiral flow-inducer were 3D-printed to facilitate ultrasound visualization. Compared to straight flow, spiral flow generated by the flow-inducer significantly cleared the recirculation/stasis zones at the corners of the angled conduits. CFD simulations demonstrated that past a geometry-dependent threshold, increased helical content improved washout, denoted by decreased regions of low velocity and low WSS. Overall, spiral flow markedly improved washout in difficult to reach areas in the angled conduits. This has several important clinical implications: spiral flow shows great promise in reducing blood-transport-related complications and can be used to enhance the performance of future medical devices (eg grafts, mechanical circulatory support devices, hemodialysis access ports).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call