Abstract

Structural Biology Microtubules are stiff protein polymers that play an important role in many dynamic cellular processes. Forming and maintaining complex arrays of microtubules requires a suite of enzymes, including those that sever microtubules. Microtubule-severing enzymes belong to the large family of AAA adenosine triphosphatase (ATPase) proteins, which transduce the energy from ATP hydrolysis into mechanical force. Recent structural studies have provided insight into the inner workings of this enzyme family. Zehr et al. add to these studies by reporting the x-ray structure of a monomeric AAA domain from the microtubule-severing protein katenin and cryo-electron microscopy reconstructions of the hexamer in two conformations. The ATP occupancy of a boundary subunit drives conformational changes that result in cycling between an open spiral and a closed ring, providing the force to disrupt microtubules. Nat. Struct. Mol. Biol. 10.1038/nsmb.3448 (2017).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.