Abstract

In this paper we study the mechanical attributes of the fractal nature of fracture surfaces. The structure of stress and strain singularity at the tip of a fractal crack, which can be self-similar or self-affine, is studied. The three classical modes of fracture and the fourth mode of fracture are discussed for fractal cracks in two-dimensional and three- dimensional solid bodies. It is discovered that there are six modes of fracture in fractal fracture mechanics. The J-integral is shown to be path-dependent. It is explained that the proposed modified J-integrals in the literature that are argued to be path-independent are only locally path-independent and have no physical meaning. It is conjectured that a fractal J-integral should be the rate of potential energy release per unit of a fractal measure of crack growth. The powers of stress and strain singularities at the tip of a fractal crack in a strain-hardening material are calculated. It is shown that stresses and strains have weaker singularities at the tip of a fractal crack than they do at the tip of a smooth crack.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.