Abstract

Abstract Recent developments in the fields of propulsion, flow machinery, and high-speed flight have emphasized the need for an improved understanding of the characteristics of compressible flow. A one-dimensional analysis for flow without shocks is presented which takes into account the simultaneous effects of area change, wall friction, drag of internal bodies, external heat exchange, chemical reaction, change of phase, injection of gases, and changes in molecular weight and specific heat. The method of selecting independent and dependent variables, and the organization of the working equations, leads, it is believed, to a better understanding of the influence of the foregoing effects, and also simplifies greatly the analytical treatment of particular problems. Examples are given first of several simple types of flow, including (a) area change only; (b) heat transfer only; (c) wall friction only; and (d) gas injection only. In addition, examples of flow with combined effects are given, including (a) simultaneous friction and area change; (b) simultaneous friction and heat transfer; and (c) simultaneous liquid injection and evaporation. A one-dimensional analysis for flow through a discontinuity is presented, allowing for energy, shock, drag, and gas-injection effects, and for changes in gas properties. This analysis is applicable to such processes as: (a) the adiabatic normal shock; (b) combustion; (c) moisture condensation shocks; and (d) steady explosion waves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.