Abstract

Recent years have witnessed dramatic improvements in the capabilities of propositional satisfiability procedures or SAT solvers. The speedups are the result of numerous optimizations including conflict-directed backjumping. We use the Prototype Verification System (PVS) to verify a satisfiability procedure based on the Davis–Putnam–Logemann–Loveland (DPLL) scheme that features these optimizations. This exercise is a step toward the verification of an efficient implementation of the satisfiability procedure. Our verification of a SAT solver is part of a larger program of research to provide a secure foundation for inference using a verified reference kernel that contains a verified SAT solver. Our verification exploits predicate subtypes and dependent types in PVS to capture the specification and the key invariants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.