Abstract
AbstractResults obtained from tensile and compressive tests on pure ice single crystals at various temperatures down to −90°C are reported. At −50°C tensile creep tests give a continually increasing creep rate until fracture, as observed at higher temperatures. The stress dependence of the strain-rate is discussed. Fracture stress increases with decreasing temperature. Results from constant strain-rate compressive tests are compared with theoretical curves computed from Johnston’s (1962) theory of dislocation multiplication. A dislocation velocity of the order of 0.5×10−8 m s−1 is deduced for ice at −50°C.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.