Abstract

In the heart, cardiac muscle fibers curve creating zones of membrane forces resulting in regions of mechanotransduction. This study uses the finite difference method to solve the mechanical bidomain equations numerically for a complex fiber geometry. The magnitude of the active tension T is constant but its direction makes an angle with the x-axis that varies with position. Differences between the intracellular and extracellular displacements result from the bidomain behavior of the tissue that gives rise to forces on the integrin proteins in the membrane. The long-term goal is to use the mechanical bidomain model to suggest experiments and make predictions about growth and remodeling in the heart.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call