Abstract
This study investigated the effect of fibre reinforcement on the large strain behaviour of compacted clay samples tested using large triaxial test equipment. A novel specimen preparation method was proposed where peds of clay are compacted to closely simulate the in-situ compaction. A large number of 100 × 200 mm triaxial tests and one-dimensional compression tests were performed using reinforced and unreinforced samples. The behaviour of unreinforced samples was observed to be similar to highly fissured clays; ped compaction generated a random fissure pattern due to the contact between peds. The addition of fibres to the compacted samples created fissures with higher mobility at lower friction than those in the unreinforced samples; hence, the state boundary surface of reinforced clay was below that of the unreinforced clay. With the addition of fibres, the failure mechanism changed from the formation of a shear plane to barrelling, demonstrating that the fibres transferred stresses further away from the shear plane, producing a more homogeneous stress distribution. The preparation method proposed here produced a fissure pattern in the clay that introduced transitional behaviour, which was drastically reduced with addition of the fibres, allowing better normalisation and the definition of a unique boundary surface.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.