Abstract

Twenty-one constant-strain-rate compression tests have been performed on 80 mL/kg (20 gallons/ton) Anvil Points oil shale at elevated temperatures (50–200 °C) and confining pressures (0.5–40 MPa). The strength of oil shale increases approximately linearly with confining pressure and decreases nonlinearly with temperature. Ductility is greatly enhanced by the application of confining pressure. Elevated temperatures have little influence on ductility at low confining pressures; however, temperature exerts a progressively more pronounced influence on ductility with increasing confining pressure. A purely empirical failure law, incorporating the effects of temperature and confining pressure, has been fitted to the data. The failure law is in good agreement with the results of other studies on the compressive strength of oil shale. Keywords: oil shale, strength–temperature–pressure behaviour, rock mechanics, kerogen.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.