Abstract
AbstractThe processing of a new series of liquid crystalline (LC) epoxy networks was evaluated. Above the glass transition temperature, the low crosslink density networks could be mechanically aligned. The mechanically oriented networks readily lost orientation upon heating. Highly anisotropic liquid crystalline (LC) epoxy networks were also prepared by aligning the mesophase of the prepolymer during the curing process under the influence of a magnetic field. Orientation parameters (f) of 0.13 to 0.57 were achieved by these processes as determined by x‐ray diffraction analysis. The ability of the magnetically aligned networks to retain their orientation above the glass transition temperature was determined by time‐resolved x‐ray diffraction. The stability of the alignment of these networks was found to depend on crosslink density. The effect of the anisotropy of these networks was investigated by measuring the coefficient of thermal expansion (CTE). In the aligned networks, there was a substantial reduction in CTE parallel to the direction of the applied field compared to the randomly oriented networks. © 1992 John Wiley & Sons, Inc.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Polymer Science Part A: Polymer Chemistry
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.