Abstract

We study the role of information (the relative entropy) for polymers undergoing coil-globule transitions driven by a time-dependent force. Pulling experiments at various speeds are performed by Brownian dynamics simulations. We obtain the work distributions for the forward and time-reversed backward processes and information stored at the end of the nonequilibrium pulling processes. We present the systematic method to measure the information from the pulling experiments and extract the information by analyzing slowly relaxing modes. When the information is incorporated, the work distributions modified by the information allow access to the proper free energy via the formulation of the generalized fluctuation theorems even if the initial states of the forward and time-reversed backward processes are out of equilibrium. This demonstrates that the work-information conversion works well for a single-molecule system with many degrees of freedom.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.