Abstract

A methodology is proposed for the measurement of a number of parameters relevant to the performance evaluation of aerosol corona chargers. These parameters are intrinsic and extrinsic charging efficiencies, and diffusion and electrostatic particle losses. The methodology is essentially the same as that used in earlier works, except that free ions are removed just after the charger outlet in order to minimize the extent of possible after-charging effects which might lead to measurement errors. However, the experimental results show that after-charging is negligible and that, consequently, practically all the effective ion–particle collisions take place before the aerosol leaves the charger. Formation of new particles during corona discharge, which could in principle be an additional cause of measurement error, has not been observed in the working voltage range of the charger. Particle diffusion and electrostatic losses have been measured at varying values of the voltage applied to the charger: for a given particle size, diffusion loss decreases and electrostatic loss increases as the charger voltage is increased. The intrinsic charging efficiency increases with particle size and charger voltage. In contrast, the extrinsic charging efficiency, which is the parameter of importance in practice, attains a maximum value for a given charger voltage in such a manner that this optimum voltage depends on particle size.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call