Abstract

A unique cascade facility is described which permits the use of laser-Doppler velocimetry (LDV) to measure blade boundary layer profiles. Because of the need for a laser access window, the facility cannot reply on continuous blade pack suction to achieve two-dimensional, periodic flow. Instead, a strong suction upstream of the blade pack is used in combination with tailboards to control the flow field. The distribution of the upstream suction is controlled through a complex baffling system. A periodic, two–dimensional flow field is achieved at a chord Reynolds number of 500,000 and an incidence angle of 5 deg on a highly loaded, double circular arc, compressor blade. Inlet and outlet flow profiles, taken using five-hole probes, and the blade static-pressure distribution are used to document the flow field for use with the LDV measurements (see Parts 2 and 3). Inlet turbulence intensity is measured, using a hot wire, to be 0.18 percent. The static-pressure distribution suggests both separated flow near the trailing edge of the suction surface and an initially laminar boundary layer profile near the leading edge of the pressure surface. Probe measurements are supplemented by sublimation surface visualization studies. The sublimation studies place boundary layer transition at 64.2 ± 3.9 percent chord on the pressure surface, and indicate separation on the suction surface at 65.6 percent ± 3.5 percent chord.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call