Abstract

Two water vapor radiometer (WVR) experiments were conducted to evaluate whether such instruments are both suitable and necessary to correct for propagation effects that are induced by precipitable water vapor (PWV) on signals from the Global Positioning System (GPS) and Very Long Baseline Interferometry (VLBI). WVRs are suitable for these corrections if they provide wet path delays to better than 0.5 cm. They are needed if spatial variations of PWV result in complicated, direction-dependent propagation effects that are too complex to be parameterized in the GPS or VLBI geodetic solution. In the first experiment, the suitability of radiometers were addressed by comparing six WVRs at Stapleton International Airport in Denver, Colorado, for two weeks. The second experiment addressed the question whether radiometers are needed for the detection of inhomogeneities in the wet delay. Three JPL D-series radiometers were operated at three sites in Colorado approximately 50 km apart. The WVRs simultaneously sampled PWV at different azimuths and elevations in search of spatial variations of PWV. >

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call