Abstract

We report a new approach to the measurement of alkaline phosphatase concentration based on the use of a disposable poly(aniline) microelectrochemical transistor. The measurement is carried out in a two cell configuration in which the poly(aniline) microelectrochemical transistor operates in acid solution and is connected to the alkaline buffer solution containing the analyte by a salt bridge. Disposable microelectrochemical transistors were reproducibly fabricated by electrochemical deposition of poly(aniline) onto photolithographically fabricated gold microband arrays. Using these devices alkaline phosphatase was detected by employing p-aminophenyl phosphate as the substrate for the enzyme and using glucose and glucose oxidase to recycle the p-aminophenol generated upon enzyme catalysed hydrolysis of the phosphate. Recycling the p-aminophenol with glucose and glucose oxidase amplified the detection of alkaline phosphatase approximately tenfold. Using this approach we obtain linear calibration curves for alkaline phosphatase up to 5 nM within 70 s on single use devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.