Abstract

A previous paper (Duerig and Bhattacharya in Shap Mem Superelasticity 1:153–161, 2015) introduced several engineering considerations surrounding the R-phase in Nitinol and highlighted a common, if not pervasive, misconception regarding the use of the term Af by the medical device industry. This paper brings additional data to bear on the issue and proposes more accurate terminology. Moreover, a variety of tools are used to establish the forward and reverse stress–temperature phase diagrams for a superelastic wire typical of that used in medical devices. Once established, the two most common methods of measuring transformation temperatures, Differential Scanning Calorimetry and Bend Free Recovery, are tested against the observed behavior. Light is also shed upon the origin of the Clausius–Clapeyron ratio (dσ/dT), the triple point, and why such large variations are reported in superelastic alloys.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.