Abstract

In this paper, we investigate irregularities in a cylindrical self-gravitating system which contains the properties of an imperfect matter and electromagnetic field. For $f(R,T,Q)$ theory, in which $R$ represents the Ricci scalar and $T$ shows the trace of matter stress-energy tensor while $Q\equiv R_{\gamma\delta}T^{\gamma\delta}$, the field equations containing electric charge, mass functions and Darmois junction conditions at the hypersurface are examined. We have adopted new definition of complexity introduced by Herrera \cite{herrera2018new}, generalized it for the static charged cylindrically symmetric case in $f(R,T,Q)$ theory by performing a detailed analysis on the orthogonal splitting of the Riemann curvature tensor. One of the effective scalars, $Y_{TF}$, has been recognized as a complexity factor. This factor is comprised of certain physical components of the fluid such as irregularity in energy density, locally pressure anisotropy and electric charge (arranged in a specific way). In addition, the effects of extra curvature terms of modified gravity are examined by making the relations among the complexity factor, Weyl scalar and Tolman mass.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call