Abstract

A hypergroup is a locally compact space on which the space of finite regular Borel measures has a convolution structure preserving the probability measures. This paper deals only with commutative hypergroups. §1 contains definitions, a discussion of invariant measures, and a characterization of idempotent probability measures. §2 deals with the characters of a hypergroup. §3 is about hypergroups, which have generalized translation operators (in the sense of Levitan), and subhypergroups of such. In this case the set of characters provides much information. Finally §4 discusses examples, such as the space of conjugacy classes of a compact group, certain compact homogeneous spaces, ultraspherical series, and finite hypergroups.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.