Abstract

A stochastic epidemic model with random noise transmission is taken into account, describing the dynamics of the measles viral infection. The basic reproductive number is calculated corresponding to the stochastic model. It is determined that, given initial positive data, the model has bounded, unique, and positive solution. Additionally, utilizing stochastic Lyapunov functional theory, we study the extinction of the disease. Stationary distribution and extinction of the infection are examined by providing sufficient conditions. We employed optimal control principles and examined stochastic control systems to regulate the transmission of the virus using environmental factors. Graphical representations have been offered for simplicity of comprehending in order to further verify the acquired analytical findings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.