Abstract

A stochastic epidemic model with random noise transmission is taken into account, describing the dynamics of the measles viral infection. The basic reproductive number is calculated corresponding to the stochastic model. It is determined that, given initial positive data, the model has bounded, unique, and positive solution. Additionally, utilizing stochastic Lyapunov functional theory, we study the extinction of the disease. Stationary distribution and extinction of the infection are examined by providing sufficient conditions. We employed optimal control principles and examined stochastic control systems to regulate the transmission of the virus using environmental factors. Graphical representations have been offered for simplicity of comprehending in order to further verify the acquired analytical findings.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call