Abstract
We consider the mean-variance hedging of a defaultable claim in a general stochastic volatility model. By introducing a new measure Q 0, we derive the martingale representation theorem with respect to the investors' filtration 𝔾. We present an explicit form of the optimal-variance martingale measure by means of a stochastic Riccati equation (SRE). For a general contingent claim, we represent the optimal strategy and the optimal cost of the mean-variance hedging by means of another backward stochastic differential equation (BSDE). For the defaultable option, especially when there exists a random recovery rate we give an explicit form of the solution of the BSDE.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.