Abstract
Asymmetric models have been extensively studied in recent years, in situations where the normality assumption is not satisfied due to lack of symmetry of the data. Techniques for assessing the quality of fit and diagnostic analysis are important for model validation. This paper presents a study of the mean-shift method for detecting outliers in asymmetric normal regression models. Analytical solutions for the estimators of the parameters are obtained using the algorithm. Simulation studies and application to real data are presented, showing the efficiency of the method in detecting outliers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Communications in Statistics - Simulation and Computation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.