Abstract

The application of various radiation detectors for brachytherapy dosimetry has motivated this study of the energy dependence of radiation quality correction factor kQ,M, the quotient of the detector responses under calibration conditions at a 60Co unit and under the given non-reference conditions at the point of measurement, M, occurring in photon brachytherapy. The investigated detectors comprise TLD, radiochromic film, ESR, Si diode, plastic scintillator and diamond crystal detectors as well as ionization chambers of various sizes, whose measured response-energy relationships, taken from the literature, served as input data. Brachytherapy photon fields were Monte-Carlo simulated for an ideal isotropic 192Ir point source, a model spherical 192Ir source with steel encapsulation and a commercial HDR GammaMed Plus source. The radial source distance was varied within cylindrical water phantoms with outer radii ranging from 10 to 30cm and heights from 20 to 60cm. By application of this semiempirical method - originally developed for teletherapy dosimetry - it has been shown that factor kQ,M is closely correlated with a single variable, the fluence-weighted mean photon energy ĒF at the point of measurement. The radial profiles of ĒF obtained with either the commercial 192Ir source or the two simplified source variants show little variation. The observed correlations between parameters kQ,M and ĒF are represented by fitting formulae for all investigated detectors, and further variation of the detector type is foreseen. The herewith established close correlation of radiation quality correction factor kQ,M with local mean photon energy ĒF can be regarded as a simple regularity, facilitating the practical application of correction factor kQ,M for in-phantom dosimetry around 192Ir brachytherapy sources. ĒF values can be assessed by Monte Carlo simulation or measurement. A technique describing the local measurement of ĒF will be published separately.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.