Abstract

The transient properties of a three-level atomic optical bistable system in the presence of multiplicative and additive noises are investigated. The explicit expressions of the mean first-passage time (MFPT) of the transition from the high intracavity intensity state to the low one are obtained by numerical computations. The impacts of the intensities of the multiplicative noise DM and the additive noise DA, the intensity of correlation between two noises λ, and the intensity of the incident light y on the MFPT are discussed, respectively. Our results show: (i) for the case of no correlation between two noises (λ = 0.0), the increase in DM and DA can lead to an increase in the probability of the transition to the low intracavity intensity state, while the increase in y can lead to a retardation of the transition; and (ii) for the case of correlation between two noises (λ = 0.0), the increase in λ can cause an increase in the probability of the transition, and the increase in DA can cause a retardation of the transition firstly and then an increase in the probability of the transition, i.e., the noise-enhanced stability is observed for the case of correlation between two noises.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.