Abstract
We study the mean-field limit of the Cucker-Smale (C-S) model for flocking on complete smooth Riemannian manifolds. For this, we first formally derive the kinetic manifold C-S model on manifolds using the BBGKY hierarchy and derive several a priori estimates on emergent dynamics. Then, we present a rigorous mean-field limit from the particle model to the corresponding kinetic model by using the generalized particle-in-cell method. As a byproduct of our rigorous mean-field limit estimate, we also establish a global existence of a measure-valued solution for the derived kinetic model. Compared to the corresponding results on R d \mathbb {R}^d , our procedure requires additional assumption on holonomy and proper a priori bound on the derivative of parallel transports. As a concrete example, we verify that hyperbolic space H d \mathbb {H}^d satisfies our proposed standing assumptions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.