Abstract

To investigate the relationship between mean dissolution time (MDT) and dose/solubility ratio (q) using the diffusion layer model. Using the classic Noyes-Whitney equation and considering a finite dose, we derived an expression for MDT as a function of q under various conditions. q was expressed as a dimensionless quantity by taking into account the volume of the dissolution medium. Our results were applied to in vitro and in vivo data taken from literature. We found that MDT depends on q when q < 1 and is infinite when q > 1 and that the classic expression of MDT = 1/k. where k is the dissolution rate constant, holds only in the special case of q = 1. For the case of perfect sink conditions, MDT was found to be proportional to dose. Using dissolution data from literature with q < 1, we found better estimates of MDT when dependency on dose/ solubility ratio was considered than with the classic approach. Prediction of dissolution limited absorption was achieved for some of the in vivo drug examples examined. The mean dissolution time of a drug depends on dose/ solubility ratio, even when the model considered is the simplest possible. This fact plays an important role in drug absorption when absorption is dissolution limited.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.