Abstract

Autoinhibition of p53 binding to MDMX requires two short-linear motifs (SLiMs) containing adjacent tryptophan (WW) and tryptophan-phenylalanine (WF) residues. NMR spectroscopy was used to show the WW and WF motifs directly compete for the p53 binding site on MDMX and circular dichroism spectroscopy was used to show the WW motif becomes helical when it is bound to the p53 binding domain (p53BD) of MDMX. Binding studies using isothermal titration calorimetry showed the WW motif is a stronger inhibitor of p53 binding than the WF motif when they are both tethered to p53BD by the natural disordered linker. We also investigated how the WW and WF motifs interact with the DNA binding domain (DBD) of p53. Both motifs bind independently to similar sites on DBD that overlap the DNA binding site. Taken together our work defines a model for complex formation between MDMX and p53 where a pair of disordered SLiMs bind overlapping sites on both proteins.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.