Abstract

Neutrophil chemotaxis depends on actin dynamics, but the roles for specific cytoskeleton regulators in this response remain unclear. By analysis of mammalian diaphanous-related formin 1 (mDia1)-deficient mice, we have identified an essential role for this actin nucleator in neutrophil chemotaxis. Lack of mDia1 was associated with defects in chemoattractant-induced neutrophil actin polymerization, polarization, and directional migration, and also with impaired activation of RhoA, its downstream target p160-Rho-associated coil-containing protein kinase (ROCK), and the leukemia-associated RhoA guanine nucleotide exchange factor (LARG). Our data also revealed mDia1 to be associated with another cytoskeletal regulator, Wiskott-Aldrich syndrome protein (WASp), at the leading edge of chemotaxing neutrophils and revealed polarized morphology and chemotaxis to be more mildly impaired in WAS(-/-) than in mDia1(-/-) neutrophils, but essentially abrogated by combined mDia1/WASp deficiency. Thus, mDia1 roles in neutrophil chemotaxis appear to be subserved in concert with WASp and are realized at least in part by activation of the LARG/RhoA/ROCK signaling pathway.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call