Abstract

Soluble sugar content is a key component in controlling fruit flavor, and its accumulation in fruit is largely determined by sugar metabolism and transportation. When the diurnal temperature range is greater, the fleshy fruits accumulated more soluble sugars and become more sweeter. However, the molecular mechanism underlying this response remains largely unknown. In this study, we verified that low-temperature treatment promoted soluble sugar accumulation in apple fruit and found that this was due to the upregulation of the Tonoplast Sugar Transporter genes MdTST1/2. A combined strategy using assay for transposase-accessible chromatin (ATAC) sequencing and gene expression and cis-acting elements analyses, we identified two C-repeat Binding Factors, MdCBF1 and MdCBF2, that were induced by low temperature and that might be upstream transcription factors of MdTST1/2. Further studies established that MdCBF1/2 could bind to the promoters of MdTST1/2 and activate their expression. Overexpression of MdCBF1 or MdCBF2 in apple calli and fruit significantly upregulated MdTST1/2 expression and increased the concentrations of glucose, fructose, and sucrose. Suppression of MdTST1 and/or MdTST2 in an MdCBF1/2-overexpression background abolished the positive effect of MdCBF1/2 on sugar accumulation. In addition, simultaneous silencing of MdCBF1/2 downregulated MdTST1/2 expression and apple fruits failed to accumulate more sugars under low-temperature conditions, indicating that MdCBF1/2-mediated sugar accumulation was dependent on MdTST1/2 expression. Hence, we concluded that the MdCBF1/2-MdTST1/2 module is crucial for sugar accumulation in apples in response to low temperatures. Our findings provide mechanistic components coordinating the relationship between low temperature and sugar accumulation as well as new avenues to improve fruit quality.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.