Abstract

We make use of Friedrich’s representation of spatial infinity to study asymptotic expansions of the Maxwell-scalar field system near spatial infinity. The main objective of this analysis is to understand the effects of non-linearities of this system on the regularity of solutions and polyhomogeneous expansions at null infinity and, in particular, at the critical sets where null infinity touches spatial infinity. The main outcome from our analysis is that the nonlinear interaction makes both fields more singular at the conformal boundary than what is seen when the fields are non-interacting. In particular, we find a whole new class of logarithmic terms in the asymptotic expansions, which depend on the coupling constant between the Maxwell and scalar fields. We analyze the implications of these results on the peeling (or rather lack thereof) of the fields at null infinity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.