Abstract

AbstractThis paper investigates a discrete‐time risk model that involves exchangeable dependent loss generating claim occurrences and compound binomially distributed aggregate loss amounts. First, a general framework is presented to derive the distribution of a surplus sequence using the model. This framework is then applied to obtain the distribution of any function of a surplus sequence in a finite‐time interval. Specifically, the distribution of the maximum surplus is obtained under nonruin conditions. Based on this distribution, the computation of the minimum surplus distribution is given. Asset and risk management–oriented implications are discussed for the obtained distributions based on numerical evaluations. In addition, comparisons are made involving the corresponding results of the classical discrete‐time compound binomial risk model, for which claim occurrences are independent and identically distributed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.