Abstract

Fullerenes tend to follow the isolated pentagon rule, which requires that each of the 12 pentagons is surrounded only by hexagons. Over the past decade many violations to this rule were reported for endohedral fullerenes. Based on the ionic model M(3)N(6+)@C(2n)(6-) and the orbital energies of the isolated cages, in 2005 we formulated a molecular orbital rule to identify the most suitable hosting cages in endohedral metallofullerenes. Now, we give physical support to the orbital rule, and we propose the maximum pentagon separation rule, which can be applied to either isolated pentagon rule cages or to non-isolated pentagon rule cages with the same number of adjacent pentagon pairs. The maximum pentagon separation rule can be formulated as 'The electron transfer from the internal cluster to the fullerene host preferentially adds electrons to the pentagons; therefore, the most suitable carbon cages are those with the largest separations among the 12 pentagons'.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.