Abstract

We study the periodogram operator of a sequence of functional data. Using recent advances in Gaussian approximation theory, we derive the asymptotic distribution of the maximum norm over all fundamental frequencies. We consider the case where the noise variables are independent and then generalize our results to functional linear processes. Our theory can be used for detecting periodic signals in functional time series when the length of the period is unknown. We demonstrate the proposed methodology in a simulation study as well as on real data. Supplementary materials for this article are available online.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.