Abstract
AbstractWe study the distribution of the maximum of a large class of Gaussian fields indexed by a box and possessing logarithmic correlations up to local defects that are sufficiently rare. Under appropriate assumptions that generalize those in Ding et al., we show that asymptotically, the centered maximum of the field has a randomly‐shifted Gumbel distribution. We prove that the two dimensional Gaussian free field on a super‐critical bond percolation cluster with close enough to 1, as well as the Gaussian free field in i.i.d. bounded conductances, fall under the assumptions of our general theorem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.