Abstract
The consistency and the asymptotic normality of the maximum likelihood estimator in the general nonlinear simultaneous equation model are proved. It is shown that the proof depends on the assumption of normality unlike in the linear simultaneous equation model. It is proved that the maximum likelihood estimator is asymptotically more efficient than the nonlinear three-stage least squares estimator if the specification is correct, However, the latter has the advantage of being consistent even when the normality assumption is removed. Hausrnan' s instrumental-variable-interpretation of the maximum likelihood estimator is extended to the general nonlinear simultaneous equation model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.