Abstract

The best known achievable rate region for the two-user Gaussian interference channel is due to the Han-Kobayashi (HK) scheme. The HK achievable region includes the regions achieved by all other known schemes. However, mathematical expressions that characterize the HK region are complicated and involve a time sharing variable and two arbitrary power splitting variables. Accordingly, the boundary points of the HK region, and in particular the maximum HK sum-rate, are not known in general. This paper studies the sum-rate of the HK scheme with Gaussian inputs. For the weak interference class, this study fully characterizes the maximum achievable sum-rate and shows that the weak interference class is partitioned into five regions. For each region, the optimal power splitting and the corresponding maximum achievable sum-rate are expressed in closed forms. Moreover, we show that the same approach can be adopted to characterize all boundary points.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call