Abstract

A hydrodynamic rolling hybrid bearing (HRHB) assembled coaxially by a rolling bearing and hydrodynamic bearing is developed to achieve two functions at low and high speeds. At low speeds, the rolling bearing of the HRHB can be utilized to avoid wear in the hydrodynamic bearing. While at high speeds, the rotor is entirely supported by the hydrodynamic bearing, keeping away the interference of the rolling bearing. However, because the HRHB is mounted coaxially by two bearings, a misalignment cannot be avoided. This can lead two unexpected consequences: either the malfunction of the rolling bearing at low speeds or the interference of rolling bearing applied on the rotor. In this paper, a computational method to calculate the maximum allowable misalignment based on the noninterference conditions of the locus of the shaft center and rolling bearing at high speeds is proposed, and the influence of the rotating speed, the spindle, and bearing structural parameters on the maximum allowable misalignment is also analyzed. The results show that the locus of the maximum allowable misalignment forms a circle along the circumferential direction. The noninterference conditions are satisfied when the maximum allowable misalignment is inside the circle.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.